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NOTE

A Note on Log Scale Hankel Transforms

The Siegman-Talman approximation of the Hankel transform may
suffer from rounding errors caused by premultiplicatian by an exponen-
tial function. The main result of this note is a medification of the
Siegman—Talman algorithm for the approximation of the Hankel trans-
form H,. The modified algorithm is just as fast as the Siegman-Talman
algorithm, but it cures the problem of rounding errors.  © 1284 Academic
Press, Inc.

1. INTRODUCTION

The Hankel transform plays a part in various branches of
physics: acoustics, optics, geo-electricity, This note grew out
of some work in geo-hydrology. For a perfectly layered
earth we consider the determination of the piezometric head
or potential ¢. At the surface the piezometric head should
vanish, and in one of the layers there is a well, modeled as
a Dirac delta functton. Making use of the continuity equa-~
tion and Darcy’s law, one easily sees that the mathematical
formulation of this problem is very much like the mathe-
matical formulation of the geo-electrical problem as con-
sidered by Koefoed [5]. We refer to his monograph for a
derivation of the results. Koefoed describes the potential ¢,
in the jth layer as a perturbation of the potential for a Dirac
delta function in 2 homogeneous earth. The perturbation is
in the form of a Hankel transform (cylinder coordinates)

v=0,1,

[ T KA ) di, (1.1)
0

where K is obtained by a recurrence relation, see Koefoed
[5]. For stability aspects of this recurrence relation see
[11].

The approximate computation of the transform (1.1)
involves some form of discretization. In some areas it is not
advantageous to sample the function K, with exponential
spacing, see Candel [2], Piessens and Branders [8], and
Wong [12] for methods which avoid exponential spacing.
However, in other areas there is no problem with an
exponential spacing, see Talman [10] for some examples
from physics. In Koefoed’s work, too, the ¢xponential
spacing is no problem, see Gosh [47. This means that the
Gardner transform is applicable, see Gardner [3], resulting
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in the Siegman-Talman approximation method for (1.1), <f.
Siegman [91, Talman [ 10]. We shall explain this method in
detail in Section 2,

Some experiments with the Siegman-Talman approxima-
tion method showed bad results either for large values of r,
of for small values of r. The errors turned out to be rounding
errors that were blown up by an exponential function ¢
For the Hankel transform A, v> 0 this exponential func-
tion is easily avoided. We describe this in detail in the
preliminaries, Section 2. The main result of this note is an
algorithm for the Hankel transform H, without exponential
blowup of rounding errors, see Section 3. The algorithm is
a slight modification of the Siegman-Talman algorithm.
Finally, we give a numerical example tn Section 4.

2. PRELIMINARIES: THE HANKEL TRANSFORMATION
H, v>0

In this section we discuss the approximation of the
Hankel transform corresponding to J, by means of a
digerete Fourier transform. The Hankel transform H, is
defined as

H, f(r)= Lw fALAN AL, r>0. (1)

Some authors employ a different but related definition.
Following Gardner ¢f al. [3] and Gosh [4] we substitute

(2.2)

resulting in

HNV=[ eVfe NI 23)

Following Siegman [9] and Talman [10] we want to
interpret this integral as the convolution

(H,fNe®)=F® j(x), (24)

where

Axy=eYe™),  Jux)=JLe") (2.5)
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1. INFRODUCTION

The Hankel transform plays a part in various branches of
physics: acoustics, optics, geo-electricity. This note grew out
of some work in geo-hydrology. For a perfectly layered
carth we consider the determination of the piezometric head
or potential ¢ At the surface the piczometric head should
vanish, and in one of the layers there is a well, modeled as
a Dirac delta function. Making use of the continuity equa-
tion and Darcy's law, one casily sees that the mathematical
formulation of this problem is very much like the mathe-
matical formulation of the geo-electrical problem as con-
stdered by Koeloed [5]. We reler to his monograph for a
derivation of the results, Koefoed describes the potential ¢,
in the jth layer as a perturbation of the potential for a Dirac
delta function in a homogencous earth. The perturbation is
in the form of a Hankel transform (cylinder coordinates)

[" Kwagina,  v=0,1, (1.1)
O

where K; is obtained by a recurrence relation, see Kocfoed
[5]. For stability aspects of this recurrence relation see
1

The approximale computation of the transform (1.1)
involves some form of discretization. In some areas it is not
advantageous to sample the lunction K; with exponential
spacing, see Candel [2], Piessens and Branders [87], and
Wong [12] for methods which avoid exponential spacing..
However, in other arcas there is no problem with an

in the Siegman-Talman approximation method for (1.1), cf.
Siegman [ 9], Talman [ 107]. We shall explain this method in
detail in Section 2.

Some experiments with the Siegman-Talman approxima-
tion method showed bad results either for large values of r,
or for smatl values of r. The errors turned out to be rounding
errors that were blown up by an cxponential function ¢*.
For the Hanket transform H_, v > 0 this exponential func-
tion is casily avoided. We describe this in detail in the
preliminaries, Section 2. The main resuit of 1his note is an
algorithm for the Hankel transform H, without exponential
blowup of rounding errors, see Section 3. The algorithm is
a slight modification of the Siegman-Talman algorithm.
Finally, we give a numerical example i Section 4.

2. PRELIMINARIES: THE HANKEL TRANSFORMATION
H, v>0

In this section we discuss the approximation of the
Hankel transform corresponding to J, by means of a
discrete Fourier transform. The Hankel transform H, is
defined as

r>0.

HA)= [ f2) 4,0 di, @1

Some authors employ a different but related definition.
Following Gardner et al. [3] and Gosh [4] we substitute

{2.2)

resulting in

(2.3)

(HofNe) = e fle™) I e dy.

Following Siegman [9] and Talman [10] we want to
interpret this integral as the convolution

. . . H, e )Y=F® j(x), 24
exponential spacing, see Talman [10] Tor soinc examples (.S )e) ® Ji(x) (24)
from physics. In Koefoed’s work, too, the exponential where

spacing is no problem, see Gosh [4]. This means that the

Gardner transform is applicabie, sce Gardner [ 37, resulling Flx)=e fle™ ™), Flx)=J (e*) (2.5)
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This interpretation requires F, j, € L3(R), L%(R) the space of
square-integrable functions on the real line. The function F
certainly belongs to L*(R) if /' is bounded, continuous, and
if |[f{A)i~@(A2"?), p>1, for A— 00. The function j(x)
decays exponentially for x — oo, and it decays exponentially
for x - — oo, provided v > 0. Hence, j, & LA(R) for v > 0.

The convelution may be computed by means of the
convolution theorem F(F® j,}=F FxFj,, with # the
Fourier transform given by

e~ ™ (1) dt. (2.6)

f(s) 5 Ff(s)=—=
fis) 5 -~ f
Making use of formula (11.4.16} in Abramowitz and Stegun

[11, it is possible to compute the Fourier transform of j,
explicitly, cf. Talman [107]. We have

1 ) v oIS v s
= 27N P ——=)/r[~-+=+1)). (27
N 2T ( (2 2)/ (2-!_2+ )) (27)

Apply the formula I'(z + 1)=zI(z) to the denominator in
(2.7, and recall that | (z)| = |F(£)|. Then

Jus)

1

4 R ST arg({v/2 — is/2))
2 e .

Juis)=
2n v+ is

Formula (2.8) shows that the Fourier transform j, of
J(xy=J.(e") decays like 1/js| for large |s|.

We return to the convolution (24). The Fourier
transform of the Bessel function term in the convolution
decays slowly. However, if the other term, the function
F, decays rapidly, then the product of the two transforms
decays rapidly. Le., the Fourier transform of H, f then
decays rapidly. In such circumstances the approximation of
the Fourier transform of F by a discrete Fourier transform
(DFT) on an interval of suitable length is feasible. This is
exactly the algorithm, see also Talman [10].

(2.8)

ALGORITHM 2.1 (Approximation of the Hankel transform
H,, v>0). (i) Choose an appropriate value for T and
approximate F, cf. (2.5), on (-7, T] by means of a
trigenometric polynomial. 7" should be so large that the
difference between the trigonometric polynomial and F
is sufficiently small on [T, 7]. Use the FFT in the
computation of the Fourier coefficients.

(ii) Compute the corresponding values of j, by means
of formula (2.8). The argument of the gamma function
may be computed using the Kuki aigorithm, cof [7,
Algorithm 4211.

{(iii) Apply the convolution theorem; ic., compute the
product of corresponding Fourier coefficients of # F and j,
and obtain an approximating trigonometric polynomial on
(7T, T for (H,f)(e*) by means of the FFT.
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This algorithm is essentially the one described by Talman
[10] for the Fourier—Bessel transform. The gamma function
is evaluated using the Kuki algorithm, see also Kolbig [6].
Talman [10] describes a similar process. For the Hankel
transform Talman [10] prefers the formula
o, —ax xy

e[

(va)(ex) e_-‘f(e—y) em(xﬁy}

xJ,(e"™ ") dy (2.9)
instead of (2.3). However, in our computations we found
o ={) the best value. The reason is quite simple. The integral
in (2.9) is computed as a convolution by means of discrete
(fast} Fourier transforms. Then, either the results for small
x or the results for large x are multiplied by an exponentialiy
large factor. We found that this muitiplication by exp( —oxx)
spoils the results. For o =0 there is no multiplication by a
large factor.

By using (2.9) instead of (2.3} Talman [10] is able to
apply his algorithm to approximate H,, but with 2 #0. In
the following section we shall describe a slightly modified
algorithm for the approximation of Hf without a multi-
plication by an exponential factor.

3. THE HANKEL TRANSFORMATION H|

In this section we consider the Hankel transformation
H,. We obtain a useful algorithm in which the FFT is inter-
preted by means of principal value integrals. Consider for-
mula (2.3) with v =0. The formula is valid for all F, cf. {2.5)
of class L*(R). However, it is not possible to interpret the
integral (2.3) as a convolution, since the function j, is not of
class L*(R). In order to obtain a convolution interpretation
we rewrite (2.3) with v =0 as, ¢f. Talman [10], or (2.9):

(H()f](ex) =™ J-w 3_“ _")Jf(e—}') e:!(x—_\‘)

x Jole™ V) dy. (310

Put
Fx)=e "= (e™),

(3.2)
Jo.xx) = e¥Uo(e”).

We choose a > 0, and we suppose F, € L¥(R) for sufficiently
small non-negative «. Later in this section we shall sum-
marize the requircments on the functions F, and /. Note
that Fy=F, cf. (2.5). Clearly, for smail positive « we have
Jo.« € L*(R). Hence, the integral in (3.2) may be interpreted
as a convolution, provided «>0. By the convolution

theorem we have
(HofWe“y=e™"F ~

"Fy % o () (3.3}
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In view of formula (11.4.16) of Abramowitz and Stegun [1]
we easily compute j, ,; see also Talman [10],

1 T+ fa—1Lis) 1

- — o —is

(1 —ta+Lisya—is

We want to take the limit ¢ — 0 in formuia (3.3). Clearly,
this limit exists provided

r—Lisy 1
Tl +3isya—1is

Lo .
lim — [ s Fy(s)2 " ds (34)

@~ 027
exists. Assume for small positive « in L*(R)-sense,

F,=F+0G+0(a?) (3.5}
This formula holds if F,, ¢F,(¢), and #*F,(¢) belong to
L*(R), and this is so if £ is bounded and if | f(7)| = O(¢***),
&> 0. These conditions also ensure the differentiability of
F,. Using the differentiability of F and (3.5) we see that the
limit in (3.4) exists and is given by the principal value
integral

r—1Lis) 1

[ etz "
(1 + Lis) —is

— 0

Hence under rather weak assumptions on f,

(Hof)e*)= —51; P.V. LD e F(s)2 "
1.
Sl zw)l s (3.6)
I(1+ }is)is
It should be noted that this formuia may also be obtained
from the Parseval relation for the Mellin transform, cf.
Wong (13, p. 152].

Let us now consider the approximation of the principle
value integral in (3.6). Again as in Section 2 we want to use
the DFT (implemented as a FFT) to obtain the value of the
right-hand side in equidistant points on the x-axis. As in
Section 2 we restrict the domain of integration on the x-axis
to (— 7, T] and in the frequency domain to (— S, S]. Here
S depends on 7 and the number of points in the DFT. The
DFT uses values of the function

Fn)

s)

- hl

[A)

K(s)=
Fis) froy g s L= 325) G7)
(y=F) 27" oy i)

in symmetrically {with respect to s =0) placed equidistant
points on the s-axis, including s = 0. These values are just
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the Fourier coefficients of the trigonometric polynomial
associated with the DFT. Typically, the value of K at =0
is undefined. We remedy this by putting K(0)=0. One
obtains K(0) =0 by modifying k in a small neighborhood of
5= 10, such that

lim @=0.
s—0 F

The diameter of the neighborhood should also be so small
that the other values of K used in the DFT are not affected.
This is always possible. The DFT on (— S, §] is now well
defined, but the result of the computation may suffer from
the deliberate choice K(0)=0. Let us consider the conse-
quences of this choice. The key observation is the factor is
in the denominator of K. In view of this factor we see that
& 'k is the derivative of # ~'K. This is formally true for
the Fourier transform. However, it is always true for the
DFT on (— 8, §7. Let us denote the DFT operator by %;.
Hence, with the interpretation as trigonometric pelynomial,

d _ .
—FTR=F %,

or
fglli':jf;%dx.

The deliberate choice of K(0)=0 may be explained by a
change of k£ on a small neighborhood of the origin, see
above. In this neighborhood of the origin the DFT uses only
the constant function component. Thus the modification of
k implics a modification by a constant function of & { '%.
Therefore, with the choice K(0)=0, the primitive function
{ % 7'k dx is determined modulo a linear function in x. This
means that the DFT approximation of (3.6) in combination
with K(0)=0 determines an approximation of {(Hgf¥e*)
modulo a linear function in x. Fortunately, this suffices,
since (H, f)(0) and (H, f)(oo} are easily obtained. Indeed,

(o No0) =0,
i ) (38)
(HoO) =] e fle ) dy=FO).

This results in the following algorithm.

ALGORITHM 3.1 {Approximation of the Hankel transform
H,). (i) Choose an appropriate value for T and
approximate F, c¢f. (2.5) on (—7,7T] by means of a
trigonometric polynomial. T should be so large that the
difference between the trigonometric polynomial and F
i3 sufficiently smali on [ 7, T]. Use the FFT in the
computation of the Fourier coefficients.



LOG SCALE HANKEL TRANSFORMS

(ii) Compute the corresponding values of K, of. (3.7,
but put K(0)=0. Use the Kuki algorithm, ¢ [7, Algo-
rithm 4211, for the computation of the argument of the
I-function.

(iii) Compute # ;'K via the FFT, ¢f. (3.7} for K.

{iv} Adjust the values of & ;'K by a linear function in
x in such a way that the approximation in x=—T, ie,
r=e"T equals F(0), and such that the approximation in
x=T, ie, r=e¢" equals 0. This adjusted function in the
variable x approximates (H, f {e™).

4. NUMERICAL ILLUSTRATION

We illustrate the performance of Algorithm 3.1 by means
of two simple examples. In the first example we choose

flA)=e= 32— 7542 (4.1a)
and in the second example we choose
flAy=Aexp(—14%) (4.1b)

In both instances the transform H,f is known explicitly,
and it is given by

1 1

H, = -
(Haf ¥ V94 S+ 254

(4.2a)

and

(Ho )r}=exp(—3r?), (4.2b)
respectively. We approximate the transformed function by
the original Siegman—Talman algorithm. Le., we implement
the algorithm based on (3.1). Since j, € L*{R) we must
have o > 0. In Table I we list the maximum error in modulus

TABLE I
@ Problem {(4.1a) Problem (4.1b)
0.05 1397E -2 5.240E — 02
0.10 6.626E — 04 2.490E - 03
0.15 3291E-05 1.290E —04
0.20 1.639E — 06 1.185E - 05
0.25 8.193E — 08 1.929E —05
0.30 5.628E — 09 7.944E — 05
0.35 T129E — 09 3701E~04
0.40 3.070E — 08 1.931E 03
0.45 1.363E - 07 1.008E ~ 02
0.50 6,086E — 07 5.221E-02
0.55 2.732E - 06 2.686E —01
0.60 1.233E—-05 1.374E + 00
0.65 5.605E — 05 6.995E + 00
0.70 2.567E — 04 3545E + (01
.75 1.185E — 03 1.789E + 02
Algorithm 3.1 S.885E—11 5.383E—06
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at the sampling points. In the last row of Table T we give the
error for Algorithm 3.1. In these examples we have

n=256, T = 30.

By choosing this rather large value of T we can be sure that
the discrete Fourier transform is a good approximation of
the Fourier transform if n is large enough

ft is clear that the error in the approximation of Algo-
rithm 3.1 is smaller than the error in the original Siegman-
Talman algorithm. For small values of o the factor & — is in
the denominator in (3.4) spoils the results, while for larger
x the exponential factor exp(aT) spoils the results in a
neighborhood of r = 0. For larger « the errors in Table I are
attained at r=exp{—T). These results exhibit the bad
effects of premultiplication by an exponential factor as
required by {3.1). Also, the improvement offered by
Algorithm 3.1 is obvious.
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